<u>Reduction</u>

- Sodium borohydride in methanol (NaBH<sub>4</sub>, CH<sub>3</sub>OH)
  - Reduces ketones and aldehydes to secondary and primary alcohols, respectively.



- Lithium aluminum hydride (LAH): Conditions = 1. LiAlH<sub>4</sub>, 2. H<sub>3</sub>O<sup>+</sup>
  - LAH is the strongest of the reducing agents that we have discussed.
  - Reduces ketones and aldehydes to secondary and primary alcohols, respectively.



• Reduces carboxylic acids, esters and acid chlorides to primary alcohols.

$$\begin{array}{c} O \\ \downarrow \\ \chi \end{array} \begin{array}{c} 1) LAH \\ \hline 2) H_3O^+ \end{array} \begin{array}{c} OH \\ \downarrow \\ \end{array}$$

X = OH, OR, CI, Br

• Reduces amides to amines.

$$\bigcup_{H}^{O} \frac{1) \text{ LAH}}{2) \text{ H}_3 \text{ O}^+} \qquad \bigcup_{H}^{O} \frac{1}{2}$$

- Diisobutylaluminum hydride (DIBAL-H): Conditions = 1. DIBAL-H, 2. H<sub>2</sub>O
  - Reduces esters to aldehydes.



- Carboxylic acids and amides are unreactive to DIBAL-H.
- Will reduce aldehydes and ketones to alcohols, but generally not used for this purpose.

## **Oxidation**

- Tertiary alcohols and carboxylic acids cannot be further oxidized.
- PCC Oxidation
  - o Primary alcohols will be oxidized to aldehydes
  - Secondary alcohols will be oxidized to ketones
  - PCC will not further oxidize aldehydes



• Dess-Martin Periodinane is an alternative to PCC that does esspentially the same thing (it is a mild oxidizing agent)

- $M_2Cr_2O_7$ ,  $H_2SO_4$ ,  $H_2O$  (M = Na or K)] "Active agent =  $H_2CrO_4$ " and  $C_rO_3/H^+$  (Jones)
  - Primary alcohols will be oxidized to carboxylic acids
  - Secondary alcohols will be oxidized to ketones
  - Aldehydes will be oxidized to carboxylic acids



## Addition of Organometallic Reagents to Carbonyl Compounds

- Reactivity: R-Li > R-MgX > R<sub>2</sub>CuLi
- Organometallic reagents act as nucleophiles and bases. They are incompatible with protic solvents such as alcohols and water because a fast acid/base reaction results.
   (i.e. R-Li + H-O-H → R-H + LiOH)
- Organolithium Reagents (R-Li)
  - Preparation: R-X + 2 Li  $\rightarrow$  R-Li + LiX
  - React with aldehydes and ketones to provide 2° and 3° alcohols, respectively.



 $\circ~$  Two equivalents of R-Li will react with an ester or acid chloride to provide a 3° alcohol.



- Grignard Reagents (R-MgX)
  - Preparation:  $R-X + Mg \rightarrow R-MgX$
  - React with aldehydes and ketones to provide 2° and 3° alcohols, respectively.



 $\circ~$  Two equivalents of R-MgX will react with an ester or acid chloride to provide a 3° alcohol.



- Z = OR, CI
- Organocuprate Reagents (Gilman Reagents)
  - Preparation: 2 R-Li + CuI  $\rightarrow$  R<sub>2</sub>CuLi + LiI
  - Reacts with acid chlorides to give ketones



- Organocuprate Reagents (continued)
  - $\circ$  Does not react with carboxylic acids, esters, amides, aldehydes, or ketones (with the exception of α,β-unsaturated aldehydes and ketones).

$$\begin{array}{ccc}
O & 1. \ Ph_2CuLi \\
\hline
Z & 2. \ H_2O
\end{array}$$
No Reaction

 $Z = CH_3$ , H, OH, OR, NR<sub>2</sub>

 $\circ$  Reacts with α,β-unsaturated aldehydes and ketones to give β-substituted carbonyl compounds. This process is called 1,4-addition or conjugate addition.



• Organolithium and Grignard reagents generally do not react via 1,4-addition unless the carbonyl carbon is especially hindered.



## Protecting Groups

- Used to "protect" an alcohol from reacting with a strong nucleophile such as a hydride reagent, Grignard reagent, or organolithium species.
- The most common protecting group is an organosilicone species.
- Three steps:
  - $\circ~$  A. Protect the alcohol (reaction of alcohol with R\_3SiCl).
  - $\circ$  B. Perform desired reaction
  - $\circ$  C. Deprotect the alcohol (remove the Si group by reaction with F<sup>-</sup>).

