Reduction

- Sodium borohydride in methanol $\left(\mathrm{NaBH}_{4}, \mathrm{CH}_{3} \mathrm{OH}\right)$
- Reduces ketones and aldehydes to secondary and primary alcohols, respectively.

- Lithium aluminum hydride (LAH): Conditions =1. $\mathrm{LiAlH}_{4}, 2 . \mathrm{H}_{3} \mathrm{O}^{+}$
- LAH is the strongest of the reducing agents that we have discussed.
- Reduces ketones and aldehydes to secondary and primary alcohols, respectively.

$\xrightarrow[\text { 2) } \mathrm{H}_{3} \mathrm{O}^{+}]{\text {1) } \mathrm{LAH}}$

- Reduces carboxylic acids, esters and acid chlorides to primary alcohols.

$\mathrm{X}=\mathrm{OH}, \mathrm{OR}, \mathrm{Cl}, \mathrm{Br}$
- Reduces amides to amines.

- Diisobutylaluminum hydride (DIBAL-H): Conditions = 1. DIBAL-H, 2. $\mathrm{H}_{2} \mathrm{O}$
- Reduces esters to aldehydes.

- Carboxylic acids and amides are unreactive to DIBAL-H.
- Will reduce aldehydes and ketones to alcohols, but generally not used for this purpose.

Oxidation

- Tertiary alcohols and carboxylic acids cannot be further oxidized.
- PCC Oxidation
- Primary alcohols will be oxidized to aldehydes
- Secondary alcohols will be oxidized to ketones
- PCC will not further oxidize aldehydes

- Dess-Martin Periodinane is an alternative to PCC that does esspentially the same thing (it is a mild oxidizing agent)
- $\mathrm{M}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{2} \mathrm{O}(\mathrm{M}=\mathrm{Na}$ or K$)$] "Active agent $=\mathrm{H}_{2} \mathrm{CrO}_{4}$ " and $\mathrm{C}_{\mathrm{r}} \mathrm{O}_{3} / \mathrm{H}^{+}$(Jones)
- Primary alcohols will be oxidized to carboxylic acids
- Secondary alcohols will be oxidized to ketones
- Aldehydes will be oxidized to carboxylic acids

Addition of Organometallic Reagents to Carbonyl Compounds

- Reactivity: $\mathrm{R}-\mathrm{Li}>\mathrm{R}-\mathrm{MgX}>\mathrm{R}_{2} \mathrm{CuLi}$
- Organometallic reagents act as nucleophiles and bases. They are incompatible with protic solvents such as alcohols and water because a fast acid/base reaction results.
(i.e. $\mathrm{R}-\mathrm{Li}+\mathrm{H}-\mathrm{O}-\mathrm{H} \rightarrow \mathrm{R}-\mathrm{H}+\mathrm{LiOH}$)
- Organolithium Reagents (R-Li)
- Preparation: R-X + $2 \mathrm{Li} \rightarrow \mathrm{R}-\mathrm{Li}+\mathrm{LiX}$
- React with aldehydes and ketones to provide 2° and 3° alcohols, respectively.

- Two equivalents of R-Li will react with an ester or acid chloride to provide a 3° alcohol.

- Grignard Reagents ($\mathrm{R}-\mathrm{MgX}$)
- Preparation: $\mathrm{R}-\mathrm{X}+\mathrm{Mg} \rightarrow \mathrm{R}-\mathrm{MgX}$
- React with aldehydes and ketones to provide 2° and 3° alcohols, respectively.

- Two equivalents of $\mathrm{R}-\mathrm{MgX}$ will react with an ester or acid chloride to provide a 3° alcohol.

- Organocuprate Reagents (Gilman Reagents)
- Preparation: $2 \mathrm{R}-\mathrm{Li}+\mathrm{CuI} \rightarrow \mathrm{R}_{2} \mathrm{CuLi}+\mathrm{LiI}$
- Reacts with acid chlorides to give ketones

- Organocuprate Reagents (continued)
- Does not react with carboxylic acids, esters, amides, aldehydes, or ketones (with the exception of α, β-unsaturated aldehydes and ketones).

$\mathrm{Z}=\mathrm{CH}_{3}, \mathrm{H}, \mathrm{OH}, \mathrm{OR}, \mathrm{NR}_{2}$
- Reacts with α, β-unsaturated aldehydes and ketones to give β-substituted carbonyl compounds. This process is called 1,4-addition or conjugate addition.

- Organolithium and Grignard reagents generally do not react via 1,4-addition unless the carbonyl carbon is especially hindered.

Protecting Groups

- Used to "protect" an alcohol from reacting with a strong nucleophile such as a hydride reagent, Grignard reagent, or organolithium species.
- The most common protecting group is an organosilicone species.
- Three steps:
- A. Protect the alcohol (reaction of alcohol with $\mathrm{R}_{3} \mathrm{SiCl}$).
- B. Perform desired reaction
- C. Deprotect the alcohol (remove the Si group by reaction with F-).

(B)

$\xrightarrow[\text { 2) } \mathrm{H}_{3} \mathrm{O}^{+}]{\text {1) } \mathrm{LAH}}$

